Who gets FMF?

FMF mainly affects people with ancestors from the Eastern Mediterranean region, especially people with the following ethnic origins:

- Turkish
- Armenian
- Arabic
- Sephardi Jewish

It is the commonest genetic disease in these populations, where it may affect between 1 in 250 to 1 in 1,000 individuals. In some Eastern Mediterranean populations, 1 in 4 people are carriers of a mutation that causes FMF. It has been suggested that carrying this mutation may have provided some kind of survival benefit in the past. For example, carriers may have had improved resistance to infection.

FMF is far less common in other ethnic groups, but it can affect anyone.

FMF is equally common in men and women.
Symptoms of FMF

FMF attacks usually last up to three days. Common symptoms include:

- high fever
- severe stomach pain
- joint pain
- leg swelling
- rash (usually round the ankles)

Less common symptoms include:

- severe chest pain
- testicular pain and swelling, in children

These attacks usually start in childhood, but 10% of patients with FMF begin experiencing symptoms only after age 40. Attacks of FMF may occur without apparent cause, or may be precipitated by stress, menstruation or diet.

The pain may be so severe that the first attack is thought to be appendicitis. Between attacks, affected individuals feel entirely well and grow and develop normally.

Some patients experience muscle pain on exertion between attacks, usually affecting the calves.

The frequency of the attacks varies from once every week to several times a year. The symptoms and severity vary between different patients, sometimes even amongst members of the same family.

Blood test results always suggest that there is a lot of inflammation, and include:

- high white cell count
- high CRP
- high SAA
- high ESR

Doctors in countries where FMF is common may be familiar with this condition and quick to raise the possibility.

However, most doctors in the UK have seen few patients with FMF and it may take some time till the condition is diagnosed. In some parts of the country there are large immigrant communities from countries where FMF is common. Doctors in these areas may become more familiar with FMF.

Sometimes patients know that there is a family history and recognise the symptoms themselves.

Who should have genetic testing for FMF?

Anyone with symptoms and laboratory findings suggestive of FMF should have genetic tests performed, even if they are not from an ethnic background where FMF is common, as FMF can occur in any ethnic group.

We perform these tests at the Inherited Periodic Fever Service at the National Amyloidosis Centre.

We are happy to discuss genetic testing with siblings of FMF patients even if they do not report any symptoms.
Treatment

The treatment for FMF is a drug called colchicine. Colchicine may be derived from a flower called the autumn crocus or meadow saffron.

This flower has been known to possess medicinal powers since the time of ancient Greece. Interestingly, it grows mainly in the Mediterranean region, as well as parts of Asia.

Colchicine has been used successfully to treat FMF since 1972. Nowadays colchicine tablets are synthesised in the laboratory rather than being extracted from the flower. It is effective at preventing attacks in the vast majority of patients, so long as sufficient doses are taken. It is taken as tablets once or twice a day.

Colchicine has been very widely used and more than 30 years of experience in FMF has shown it to be very safe at the usual doses of 0.5 to 2mg per day. It may be safely given to children with FMF even before the age of 1 year. Children taking colchicine grow and develop completely normally. It is also safe during pregnancy.

The main side effect of colchicine is an upset gut with diarrhoea. This can usually be avoided by increasing the dose slowly. In some people it may be helpful to cut out consumption of milk products for a period of time. Colchicine is dangerous if taken as an overdose and should always be kept out of reach of children.

During acute attacks, analgesic (pain killing) drugs may also be helpful.

Colchicine in pregnancy

FMF is usually diagnosed in childhood or young adulthood. Many patients are concerned about the effect on childbearing potential both of FMF itself and of FMF treatment.

Some women with FMF enjoy a period free from attacks while pregnant. Others actually experience severe attacks during pregnancy that are worse than their usual attacks. These attacks may endanger the pregnancy itself, by causing miscarriage, if the FMF is not treated.

Colchicine use in pregnancy has been studied extensively in larges studies including hundreds of women. The results are clear:

The chances of successful pregnancy outcome are actually better in women who are careful to take their colchicine.

The National Amyloidosis Centre website contains a comprehensive review of the medical literature on the use of colchicine during pregnancy.

For further information, see: http://www.nationalamyloidosisiscentre.org.uk
Inherited Periodic Fever Service

The Inherited Periodic Fever Service is the only centre in the UK dedicated to the needs of patients with inherited fever syndromes. We are based at the National Amyloidosis Centre. We have “state-of-the-art” clinical and research facilities and a team of highly qualified clinical, research and support staff. We are funded by the Department of Health to provide a diagnostic and management advice service for the UK’s national caseload of patients with inherited periodic fevers and related disorders. The clinical service includes:

- Detailed clinical assessment.
- Genetic testing and counselling.
- Recommendations for treatment and monitoring response.
- Measurement and monitoring of specialised biochemical (blood) tests for C-reactive protein (CRP) and serum amyloid A protein (SAA).
- 3-12 monthly follow-up to assess response and further treatment requirements.
- Providing information and support to fever patients, their families and health providers.
- Systematic evaluation of existing and new treatments.
Staff and contact details for the Periodic Fever Service

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Director/Consultant</td>
<td>Professor Philip Hawkins</td>
<td>+44 (0)20 7433 2815/2816</td>
</tr>
<tr>
<td>Reader/Consultant</td>
<td>Dr Helen Lachmann</td>
<td>+44 (0)20 7433 2804</td>
</tr>
<tr>
<td>Clinical Research Nurses</td>
<td>Thirusha Lane</td>
<td>+44 (0)20 7433 2759</td>
</tr>
<tr>
<td></td>
<td>Nicola Stewart</td>
<td>+44 (0)20 7433 2767</td>
</tr>
<tr>
<td>Clinic Coordinator</td>
<td>Eleanor Pyart</td>
<td>+44 (0)20 7433 2738</td>
</tr>
<tr>
<td>Clinic Nurse</td>
<td>Annie Hughes</td>
<td>+44 (0)20 7433 2730</td>
</tr>
<tr>
<td>Genetic request and results</td>
<td>Alison Bybee</td>
<td>+44 (0)20 7433 2751</td>
</tr>
<tr>
<td></td>
<td>Rose Coughlan</td>
<td>+44 (0)20 7433 2753</td>
</tr>
</tbody>
</table>

General Enquiries: +44 (0)20 7433 2725
Fax: +44 (0)20 7433 2817
Web: www.ucl.ac.uk/medicine/amyloidosis
Patient information website: www.nationalamyloidosiscentre.org.uk
Appendix

FMF was first recognised as a distinct condition in 1945. In 1997 it was discovered that mutations in a gene called MEFV cause FMF.

Basic genetics - understanding inheritance

The human body is made up of millions of tiny cells, each of which contains identical copies of the genes which we inherit from our parents. These genes function like an instruction manual, or a recipe book for the cells to construct the proteins which make up the body.

Human cells each contain about 25,000 different genes, which is more than a chicken but less than a tomato.

Each cell contains two copies of each gene, one from each of our parents. Within each cell, the genes are arranged into 46 long strings, called chromosomes. 23 chromosomes come from the father and 23 from the mother. Complicated interactions between the two copies of each gene determine how the body is composed, inside and out. External traits, like hair colour, eye colour and height and internal traits like blood group are all a consequence of which genes we inherit from our parents.

How do mutations cause FMF?
The genes act like an instruction manual or a recipe for protein production inside every cell of the body. Sometimes an alteration or error may arise within a gene. This is called a mutation.

Anyone who has ever baked a cake knows that a single error in the recipe may have a number of different effects on the final product. It may lead to complete disaster (if you put in salt instead of sugar, or forgot the baking powder). Alternatively, there may be little effect on the final product (if you used canola oil instead of corn oil).

Similarly, a mutation in a gene may have a number of different effects. Some mutations have minimal effects or no effects either on the proteins produced or on the person’s health. Other mutations may lead to abnormal (“variant”) protein production, causing a wide variety of diseases.

FMF is caused by mutations in a gene called MEFV, located on chromosome number 16. This gene is responsible for production of a protein called “pyrin”. The mechanism whereby abnormal pyrin causes fever is not fully understood. It is thought that pyrin may make white blood cells 'overactive' so that attacks of inflammation occur spontaneously.

FMF is usually inherited by autosomal recessive inheritance.

Autosomal recessive inheritance

Autosomal recessive inheritance is illustrated in the figure above.

The yellow-brown box represents an unaffected gene and the blue box represents an affected gene, carrying a mutation. The two columns next to each person in the
When two asymptomatic carriers of a condition inherited by simple autosomal recessive inheritance have children:

- each child has a 25% (1 in 4) chance of receiving 2 mutated copies of the gene (one from each parent) and getting the disease itself
- each child has a 50% (1 in 2) chance of receiving a mutated copy of the gene from one parent and a normal copy from the other. These children will be asymptomatic carriers like their parents, and can pass the mutation on to their children in turn.
- each child has a 25% (1 in 4) chance of receiving 2 normal copies of the gene (one from each parent) and being healthy, with no chance of passing on the disease to the next generation
When there is simple autosomal dominant inheritance of a condition:

- each child has a 50% (1 in 2) chance of receiving a mutated copy of the gene from the father.
- each child has a 50% (1 in 2) chance of receiving a normal copy of the gene from the father.
- half of the children have a mutated gene and develop the disease. They can then pass the mutated gene and the disease on to half of their children.
- half of the children have two copies of the normal gene. They are healthy and they cannot pass the disease on to their children.
- brothers and sisters of people with the disease have a 50% (1 in 2) chance of having the mutated gene and developing disease
- men and women have equal chances of receiving the mutated gene and of developing disease

Sometimes patients with an inherited fever syndrome have no known family history of disease. This may be because:

- a few people who have inherited a mutated gene never actually develop disease. The reason for this is not known.
- a parent may have suffered from mild disease and may not have sought medical attention
- the mutation may have arisen in the patient themselves for the first time